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Preface

Since the last edition of this book appeared, more than fve million scientifc papers 
have been published. Tere has been a parallel increase in the quantity of digital 
information: new data on genome sequences, protein interactions, molecular struc-
tures, and gene expression—all stored in vast databases. Te challenge, for both sci-
entists and textbook writers, is to convert this overwhelming amount of information 
into an accessible and up-to-date understanding of how cells work. 

Help comes from a large increase in the number of review articles that attempt 
to make raw material easier to digest, although the vast majority of these reviews 
are still quite narrowly focused. Meanwhile, a rapidly growing collection of online 
resources tries to convince us that understanding is only a few mouse-clicks away. 
In some areas this change in the way we access knowledge has been highly suc-
cessful—in discovering the latest information about our own medical problems, for 
example. But to understand something of the beauty and complexity of how living 
cells work, one needs more than just a wiki- this or wiki- that; it is enormously hard 
to identify the valuable and enduring gems from so much confusing landfll. Much 
more efective is a carefully wrought narrative that leads logically and progressively 
through the key ideas, components, and experiments in such a way that readers 
can build for themselves a memorable, conceptual framework for cell biology—
a framework that will allow them to critically evaluate all of the new science and, 
more importantly, to understand it. Tat is what we have tried to do in Molecular 
Biology of the Cell.

In preparing this new edition, we have inevitably had to make some difcult 
decisions. In order to incorporate exciting new discoveries, while at the same time 
keeping the book portable, much has had to be excised. We have added new sec-
tions, such as those on new RNA functions, advances in stem cell biology, new 
methods for studying proteins and genes and for imaging cells, advances in the 
genetics and treatment of cancer, and timing, growth control, and morphogenesis 
in development.

Te chemistry of cells is extremely complex, and any list of cell parts and their 
interactions—no matter how complete—will leave huge gaps in our understanding. 
We now realize that to produce convincing explanations of cell behavior will require 
quantitative information about cells that is coupled to sophisticated mathematical/
computational approaches—some not yet invented. As a consequence, an emerg-
ing goal for cell biologists is to shift their studies more toward quantitative descrip-
tion and mathematical deduction. We highlight this approach and some of its meth-
ods in a new section at the end of Chapter 8.

Faced with the immensity of what we have learned about cell biology, it might 
be tempting for a student to imagine that there is little left to discover. In fact, the 
more we fnd out about cells, the more new questions emerge. To emphasize that 
our understanding of cell biology is incomplete, we have highlighted some of the 
major gaps in our knowledge by including What We Don’t Know at the end of each 
chapter. Tese brief lists include only a tiny sample of the critical unanswered ques-
tions and challenges for the next generation of scientists. We derive great pleasure 
from the knowledge that some of our readers will provide future answers.

Te more than 1500 illustrations have been designed to create a parallel narra-
tive, closely interwoven with the text. We have increased their consistency between 
chapters, particularly in the use of color and of common icons; membrane pumps 
and channels are a good example. To avoid interruptions to the text, some material 
has been moved into new, readily accessible panels. Most of the important pro-
tein structures depicted have now been redrawn and consistently colored. In each  
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case, we now provide the corresponding Protein Data Bank (PDB) code for the 
protein, which can be used to access online tools that provide more information 
about it, such as those on the RCSB PDB website (www.rcsb.org). Tese connec-
tions allow readers of the book to explore more fully the proteins that lie at the core 
of cell biology. 

John Wilson and Tim Hunt have again contributed their distinctive and imagi-
native problems to help students gain a more active understanding of the text. 
Te problems emphasize quantitative approaches and encourage critical thinking 
about published experiments; they are now present at the end of all chapters. Te 
answers to these problems, plus more than 1800 additional problems and solutions, 
all appear in the companion volume that John and Tim have written, Molecular 
Biology of the Cell, Sixth Edition: Te Problems Book.

We live in a world that presents us with many complex issues related to cell 
biology: biodiversity, climate change, food security, environmental degradation, 
resource depletion, and human disease. We hope that our textbook will help the 
reader better understand and possibly contribute to meeting these challenges. 
Knowledge and understanding bring the power to intervene.

We are indebted to a large number of scientists whose generous help we men-
tion separately in the detailed acknowledgments. Here we must mention some par-
ticularly signifcant contributors. For Chapter 8, Hana El-Samad provided the core 
of the section on Mathematical Analysis of Cell Functions, and Karen Hopkin made 
valuable contributions to the section on Studying Gene Expression and Function.  
Werner Kuhlbrandt helped to reorganize and rewrite Chapter 14 (Energy Conver-
sion: Mitochondria and Chloroplasts). Rebecca Heald did the same for Chapter 16 
(Te Cytoskeleton), as did Alexander Schier for Chapter 21 (Development of Mul-
ticellular Organisms), and Matt Welch for Chapter 23 (Pathogens and Infection). 
Lewis Lanier aided in the writing of Chapter 24 (Te Innate and Adaptive Immune 
Systems). Hossein Amiri generated the enormous online instructor’s question bank.

Before starting out on the revision cycle for this edition, we asked a number of 
scientists who had used the last edition to teach cell biology students to meet with 
us and suggest improvements. Tey gave us useful feedback that has helped inform 
the new edition. We also benefted from the valuable input of groups of students 
who read most of the chapters in page proofs.

Many people and much efort are needed to convert a long manuscript and a 
large pile of sketches into a fnished textbook. Te team at Garland Science that 
managed this conversion was outstanding. Denise Schanck, directing operations, 
displayed forbearance, insight, tact, and energy throughout the journey; she guided 
us all unerringly, ably assisted by Allie Bochicchio and Janette Scobie. Nigel Orme 
oversaw our revamped illustration program, put all the artwork into its fnal form, 
and again enhanced the back cover with his graphics skills. Tiago Barros helped us 
refresh our presentation of protein structures. Matthew McClements designed the 
book and its front cover. Emma Jefcock again laid out the fnal pages, managing end-
less rounds of proofs and last-minute changes with remarkable skill and patience; 
Georgina Lucas provided her with help. Michael Morales, assisted by Leah Chris-
tians, produced and assembled the complex web of videos, animations, and other 
materials that form the core of the online resources that accompany the book. Adam 
Sendrof provided us with the valuable feedback from book users around the world 
that informed our revision cycle. Casting expert eyes over the manuscript, Eliza-
beth Zayatz and Sherry Granum Lewis acted as development editors, Jo Clayton as 
copyeditor, and Sally Huish as proofreader. Bill Johncocks compiled the index. In 
London, Emily Preece fed us, while the Garland team’s professional help, skills, and 
energy, together with their friendship, nourished us in every other way throughout 
the revision, making the whole process a pleasure. Te authors are extremely fortu-
nate to be supported so generously.

We thank our spouses, families, friends, and colleagues for their continuing sup-
port, which has once again made the writing of this book possible.

Just as we were completing this edition, Julian Lewis, our coauthor, friend, and 
colleague, fnally succumbed to the cancer that he had fought so heroically for ten 
years. Starting in 1979, Julian made major contributions to all six editions, and,  
as our most elegant wordsmith, he elevated and enhanced both the style and tone  
of all the many chapters he touched. Noted for his careful scholarly approach,  
clarity and simplicity were at the core of his writing. Julian is irreplaceable, and we 
will all deeply miss his friendship and collaboration. We dedicate this Sixth Edition 
to his memory.

PREFACE
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Note to the Reader

Structure of the Book
Although the chapters of this book can be read independently of one another, they 
are arranged in a logical sequence of fve parts. Te frst three chapters of Part I 
cover elementary principles and basic biochemistry. Tey can serve either as an 
introduction for those who have not studied biochemistry or as a refresher course 
for those who have. Part II deals with the storage, expression, and transmission 
of genetic information. Part III presents the principles of the main experimental 
methods for investigating and analyzing cells; here, a new section entitled “Math-
ematical Analysis of Cell Functions” in Chapter 8 provides an extra dimension in 
our understanding of cell regulation and function. Part IV describes the internal 
organization of the cell. Part V follows the behavior of cells in multicellular sys-
tems, starting with development of multicellular organisms and concluding with 
chapters on pathogens and infection and on the innate and adaptive immune 
systems.

End-of-Chapter Problems
A selection of problems, written by John Wilson and Tim Hunt, appears in the text 
at the end of each chapter. New to this edition are problems for the last four chap-
ters on multicellular organisms. Te complete solutions to all of these problems 
can be found in Molecular Biology of the Cell, Sixth Edition: Te Problems Book.

References
A concise list of selected references is included at the end of each chapter. Tese 
are arranged in alphabetical order under the main chapter section headings. 
Tese references sometimes include the original papers in which important dis-
coveries were frst reported. 

Glossary Terms
Troughout the book, boldface type has been used to highlight key terms at the 
point in a chapter where the main discussion occurs. Italic type is used to set of 
important terms with a lesser degree of emphasis. At the end of the book is an 
expanded glossary, covering technical terms that are part of the common cur-
rency of cell biology; it should be the frst resort for a reader who encounters an 
unfamiliar term. Te complete glossary as well as a set of fashcards is available 
on the Student Website.

Nomenclature for Genes and Proteins
Each species has its own conventions for naming genes; the only common fea-
ture is that they are always set in italics. In some species (such as humans), gene 
names are spelled out all in capital letters; in other species (such as zebrafsh), all 
in lowercase; in yet others (most mouse genes), with the frst letter in uppercase 
and rest in lowercase; or (as in Drosophila) with diferent combinations of upper-
case and lowercase, according to whether the frst mutant allele to be discovered 
produced a dominant or recessive phenotype. Conventions for naming protein 
products are equally varied.

Tis typographical chaos drives everyone crazy. It is not just tiresome and 
absurd; it is also unsustainable. We cannot independently defne a fresh conven-
tion for each of the next few million species whose genes we may wish to study. 
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Moreover, there are many occasions, especially in a book such as this, where we 
need to refer to a gene generically—without specifying the mouse version, the 
human version, the chick version, or the hippopotamus version—because they 
are all equivalent for the purposes of our discussion. What convention then 
should we use?

We have decided in this book to cast aside the diferent conventions that are 
used in individual species and follow a uniform rule: we write all gene names, like 
the names of people and places, with the frst letter in uppercase and the rest in 
lowercase, but all in italics, thus: Apc, Bazooka, Cdc2, Dishevelled, Egl1. Te cor-
responding protein, where it is named after the gene, will be written in the same 
way, but in roman rather than italic letters: Apc, Bazooka, Cdc2, Dishevelled, Egl1. 
When it is necessary to specify the organism, this can be done with a prefx to the 
gene name.

For completeness, we list a few further details of naming rules that we shall 
follow. In some instances, an added letter in the gene name is traditionally used 
to distinguish between genes that are related by function or evolution; for those 
genes, we put that letter in uppercase if it is usual to do so (LacZ, RecA, HoxA4). 
We use no hyphen to separate added letters or numbers from the rest of the name. 
Proteins are more of a problem. Many of them have names in their own right, 
assigned to them before the gene was named. Such protein names take many 
forms, although most of them traditionally begin with a lowercase letter (actin, 
hemoglobin, catalase), like the names of ordinary substances (cheese, nylon), 
unless they are acronyms (such as GFP, for Green Fluorescent Protein, or BMP4, 
for Bone Morphogenetic Protein #4). To force all such protein names into a uni-
form style would do too much violence to established usages, and we shall simply 
write them in the traditional way (actin, GFP, and so on). For the corresponding 
gene names in all these cases, we shall nevertheless follow our standard rule: 
Actin, Hemoglobin, Catalase, Bmp4, Gfp. Occasionally in our book we need to 
highlight a protein name by setting it in italics for emphasis; the intention will 
generally be clear from the context.

For those who wish to know them, the table below shows some of the ofcial 
conventions for individual species—conventions that we shall mostly violate in 
this book, in the manner shown.

Organism

Species-Specifc Convention Unifed Convention Used in This Book

Gene Protein Gene Protein

Mouse Hoxa4 Hoxa4 HoxA4 HoxA4

Bmp4 BMP4 Bmp4 BMP4

integrin α-1, Itgα1 integrin α1 Integrin α1, Itgα1 integrin α1

Human HOXA4 HOXA4 HoxA4 HoxA4

Zebrafsh cyclops, cyc Cyclops, Cyc Cyclops, Cyc Cyclops, Cyc

Caenorhabditis unc-6 UNC-6 Unc6 Unc6

Drosophila sevenless, sev (named 
after recessive phenotype)

Sevenless, SEV Sevenless, Sev Sevenless, Sev

Deformed, Dfd (named 
after dominant mutant 
phenotype)

Deformed, DFD Deformed, Dfd Deformed, Dfd

Yeast

   Saccharomyces cerevisiae
   (budding yeast)

CDC28 Cdc28, Cdc28p Cdc28 Cdc28

   Schizosaccharomyces  
   pombe (fssion yeast)

Cdc2 Cdc2, Cdc2p Cdc2 Cdc2

Arabidopsis GAI GAI Gai GAI

E. coli uvrA UvrA UvrA UvrA

NOTE TO THE READER
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Molecular Biology of the Cell, Sixth Edition: Te Problems Book
by John Wilson and Tim Hunt (ISBN: 978-0-8153-4453-7)
Te Problems Book is designed to help students appreciate the ways in which 
experiments and simple calculations can lead to an understanding of how cells 
work. It provides problems to accompany Chapters 1–20 of Molecular Biology 
of the Cell. Each chapter of problems is divided into sections that correspond to 
those of the main textbook and review key terms, test for understanding basic 
concepts, pose research-based problems, and now include MCAT-style questions 
which help students to prepare for standardized medical school admission tests. 
Molecular Biology of the Cell, Sixth Edition: Te Problems Book should be useful 
for homework assignments and as a basis for class discussion. It could even pro-
vide ideas for exam questions. Solutions for all of the problems are provided in the 
book. Solutions for the end-of-chapter problems for Chapters 1–24 in the main 
textbook are also found in Te Problems Book.

RESOURCES FOR INSTRUCTORS AND STUDENTS
Te teaching and learning resources for instructors and students are available 
online. Te instructor’s resources are password-protected and available only to 
adopting instructors. Te student resources are available to everyone. We hope 
these resources will enhance student learning and make it easier for instructors to 
prepare dynamic lectures and activities for the classroom.

Instructor Resources
Instructor Resources are available on the Garland Science Instructor’s Resource 
Site, located at www.garlandscience.com/instructors. Te website provides access 
not only to the teaching resources for this book but also to all other Garland Sci-
ence textbooks. Adopting instructors can obtain access to the site from their sales 
representative or by emailing science@garland.com.

Art of Molecular Biology of the Cell, Sixth Edition
Te images from the book are available in two convenient formats: PowerPoint® 
and JPEG. Tey have been optimized for display on a computer. Figures are 
searchable by fgure number, by fgure name, or by keywords used in the fgure 
legend from the book.

Figure-Integrated Lecture Outlines
Te section headings, concept headings, and fgures from the text have been inte-
grated into PowerPoint presentations. Tese will be useful for instructors who 
would like a head start creating lectures for their course. Like all of our PowerPoint 
presentations, the lecture outlines can be customized. For example, the content of 
these presentations can be combined with videos and questions from the book or 
Question Bank, in order to create unique lectures that facilitate interactive learn-
ing. 

Animations and Videos
Te 174 animations and videos that are available to students are also available on 
the Instructor’s Website in two formats. Te WMV-formatted movies are created 
for instructors who wish to use the movies in PowerPoint presentations on Win-
dows® computers; the QuickTime-formatted movies are for use in PowerPoint 
for Apple computers or Keynote® presentations. Te movies can easily be down-
loaded using the “download” button on the movie preview page. Te movies are 
correlated to each chapter and callouts are highlighted in color.

Media Guide
Tis document provides an overview to the multimedia available for students and 
instructors and contains the text of the voice-over narration for all of the movies. 

Question Bank 
Written by Hossein Amiri, University of California, Santa Cruz, this greatly 
expanded question bank includes a variety of question formats: multiple choice, 
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short answer, fll-in-the-blank, true-false, and matching. Tere are 35–60 ques-
tions per chapter, and a large number of the multiple-choice questions will be 
suitable for use with personal response systems (that is, clickers). Te Question 
Bank was created with the philosophy that a good exam should do much more 
than simply test students’ ability to memorize information; it should require them 
to refect upon and integrate information as a part of a sound understanding. Tis 
resource provides a comprehensive sampling of questions that can be used either 
directly or as inspiration for instructors to write their own test questions. 

Diploma® Test Generator Software
Te questions from the Question Bank have been loaded into the Diploma Test 
Generator software. Te software is easy to use and can scramble questions to cre-
ate multiple tests. Questions are organized by chapter and type and can be addi-
tionally categorized by the instructor according to difculty or subject. Existing 
questions can be edited and new ones added. Te Test Generator is compatible 
with several course management systems, including Blackboard®.

Medical Topics Guide
Tis document highlights medically relevant topics covered throughout Molecular 
Biology of the Cell and Te Problems Book. It will be particularly useful for instruc-
tors with a large number of premedical, health science, or nursing students. 

Blackboard and Learning Management System (LMS) Integration
Te movies, book images, and student assessments that accompany the book  
can be integrated into Blackboard or other LMSs. Tese resources are bundled 
into a “Common Cartridge” or “Upload Package” that facilitates bulk uploading  
of textbook resources into Blackboard and other LMSs. Te LMS Common  
Cartridge can be obtained on a DVD from your sales representative or by emailing 
science@garland.com.

Resources for Students
Te resources for students are available on the Molecular Biology of the Cell  
Student Website, located at www.garlandscience.com/MBOC6-students.

Animations and Videos
Tere are 174 movies, covering a wide range of cell biology topics, which review 
key concepts in the book and illuminate subcellular processes. Te movies are 
correlated to each chapter and callouts are highlighted in color. 

Cell Explorer Slides
Tis application teaches cell morphology through interactive micrographs that 
highlight important cellular structures.

Flashcards
Each chapter contains a set of fashcards, built into the website, that allow stu-
dents to review key terms from the text.

Glossary
Te complete glossary from the book is available on the website and can be 
searched and browsed.

NOTE TO THE READER
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PART

InTRoducTIon To The cell

I IIIII IV V

Te surface of our planet is populated by living things—curious, intricately orga-
nized chemical factories that take in matter from their surroundings and use these 
raw materials to generate copies of themselves. Tese living organisms appear 
extraordinarily diverse. What could be more diferent than a tiger and a piece of 
seaweed, or a bacterium and a tree? Yet our ancestors, knowing nothing of cells or 
DNA, saw that all these things had something in common. Tey called that some-
thing “life,” marveled at it, struggled to defne it, and despaired of explaining what 
it was or how it worked in terms that relate to nonliving matter. 

Te discoveries of the past century have not diminished the marvel—quite the 
contrary. But they have removed the central mystery regarding the nature of life. 
We can now see that all living things are made of cells: small, membrane-enclosed 
units flled with a concentrated aqueous solution of chemicals and endowed with 
the extraordinary ability to create copies of themselves by growing and then divid-
ing in two. 

Because cells are the fundamental units of life, it is to cell biology—the study 
of the structure, function, and behavior of cells—that we must look for answers 
to the questions of what life is and how it works. With a deeper understanding of 
cells and their evolution, we can begin to tackle the grand historical problems of 
life on Earth: its mysterious origins, its stunning diversity, and its invasion of every 
conceivable habitat. Indeed, as emphasized long ago by the pioneering cell biolo-
gist E. B. Wilson, “the key to every biological problem must fnally be sought in the 
cell; for every living organism is, or at some time has been, a cell.” 

Despite their apparent diversity, living things are fundamentally similar inside. 
Te whole of biology is thus a counterpoint between two themes: astonishing 
variety in individual particulars; astonishing constancy in fundamental mecha-
nisms. In this frst chapter, we begin by outlining the universal features common 
to all life on our planet. We then survey, briefy, the diversity of cells. And we see 
how, thanks to the common molecular code in which the specifcations for all 
living organisms are written, it is possible to read, measure, and decipher these 
specifcations to help us achieve a coherent understanding of all the forms of life, 
from the smallest to the greatest. 

cells and Genomes

In ThIs ChapTer

The unIveRsAl FeATuRes oF 
cells on eARTh

The dIveRsITy oF Genomes 
And The TRee oF lIFe
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2 Chapter 1:  cells and Genomes

The unIveRsAl FeATuRes oF cells on eARTh
It is estimated that there are more than 10 million—perhaps 100 million—living 
species on Earth today. Each species is diferent, and each reproduces itself faith-
fully, yielding progeny that belong to the same species: the parent organism hands 
down information specifying, in extraordinary detail, the characteristics that the 
ofspring shall have. Tis phenomenon of heredity is central to the defnition of 
life: it distinguishes life from other processes, such as the growth of a crystal, or the 
burning of a candle, or the formation of waves on water, in which orderly struc-
tures are generated but without the same type of link between the peculiarities of 
parents and the peculiarities of ofspring. Like the candle fame, the living organ-
ism must consume free energy to create and maintain its organization. But life 
employs the free energy to drive a hugely complex system of chemical processes 
that are specifed by hereditary information.

Most living organisms are single cells. Others, such as ourselves, are vast mul-
ticellular cities in which groups of cells perform specialized functions linked by 
intricate systems of communication. But even for the aggregate of more than 1013 
cells that form a human body, the whole organism has been generated by cell 
divisions from a single cell. Te single cell, therefore, is the vehicle for all of the 
hereditary information that defnes each species (Figure 1–1). Tis cell includes 
the machinery to gather raw materials from the environment and to construct 
from them a new cell in its own image, complete with a new copy of its hereditary 
information. Each and every cell is truly amazing.

All cells store Their hereditary Information in the same linear 
chemical code: dnA
Computers have made us familiar with the concept of information as a measur-
able quantity—a million bytes (to record a few hundred pages of text or an image 
from a digital camera), 600 million bytes for the music on a CD, and so on. Com-
puters have also made us well aware that the same information can be recorded 
in many diferent physical forms: the discs and tapes that we used 20 years ago for 
our electronic archives have become unreadable on present-day machines. Living 

Figure 1–1 The hereditary information 
in the fertilized egg cell determines 
the nature of the whole multicellular 
organism. Although their starting cells  
look superfcially similar, as indicated: a  
sea urchin egg gives rise to a sea urchin  
(A and B). A mouse egg gives rise to a 
mouse (c and d). An egg of the seaweed 
Fucus gives rise to a Fucus seaweed  
(e and F). (A, courtesy of david mcclay; 
B, courtesy of m. Gibbs, oxford scientifc 
Films; c, courtesy of Patricia calarco, from 
G. martin, Science 209:768–776, 1980. 
With permission from AAAs; d, courtesy of 
o. newman, oxford scientifc Films; e and 
F, courtesy of colin Brownlee.)

(A)
100 µm

(C)
50 µm

(E)
50 µm

(F)(D)(B)
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cells, like computers, store information, and it is estimated that they have been 
evolving and diversifying for over 3.5 billion years. It is scarcely to be expected 
that they would all store their information in the same form, or that the archives 
of one type of cell should be readable by the information-handling machinery of 
another. And yet it is so. All living cells on Earth store their hereditary informa-
tion in the form of double-stranded molecules of DNA—long, unbranched, paired 
polymer chains, formed always of the same four types of monomers. Tese mono-
mers, chemical compounds known as nucleotides, have nicknames drawn from 
a four-letter alphabet—A, T, C, G—and they are strung together in a long linear 
sequence that encodes the genetic information, just as the sequence of 1s and 0s 
encodes the information in a computer fle. We can take a piece of DNA from a 
human cell and insert it into a bacterium, or a piece of bacterial DNA and insert 
it into a human cell, and the information will be successfully read, interpreted, 
and copied. Using chemical methods, scientists have learned how to read out the 
complete sequence of monomers in any DNA molecule—extending for many mil-
lions of nucleotides—and thereby decipher all of the hereditary information that 
each organism contains.

All cells Replicate Their hereditary Information by Templated 
Polymerization
Te mechanisms that make life possible depend on the structure of the double-
stranded DNA molecule. Each monomer in a single DNA strand—that is, each 
nucleotide—consists of two parts: a sugar (deoxyribose) with a phosphate group 
attached to it, and a base, which may be either adenine (A), guanine (G), cytosine 
(C), or thymine (T) (Figure 1–2). Each sugar is linked to the next via the phos-
phate group, creating a polymer chain composed of a repetitive sugar-phosphate 
backbone with a series of bases protruding from it. Te DNA polymer is extended 
by adding monomers at one end. For a single isolated strand, these monomers 
can, in principle, be added in any order, because each one links to the next in the 
same way, through the part of the molecule that is the same for all of them. In the 
living cell, however, DNA is not synthesized as a free strand in isolation, but on 
a template formed by a preexisting DNA strand. Te bases protruding from the 
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Figure 1–2 DNA and its building blocks. 
(A) dnA is made from simple subunits, 
called nucleotides, each consisting of a 
sugar-phosphate molecule with a nitrogen-
containing side group, or base, attached to it. 
The bases are of four types (adenine, guanine, 
cytosine, and thymine), corresponding to 
four distinct nucleotides, labeled A, G, c, 
and T. (B) A single strand of dnA consists 
of nucleotides joined together by sugar-
phosphate linkages. note that the individual 
sugar-phosphate units are asymmetric, 
giving the backbone of the strand a defnite 
directionality, or polarity. This directionality 
guides the molecular processes by which the 
information in dnA is interpreted and copied 
in cells: the information is always “read” in 
a consistent order, just as written english 
text is read from left to right. (c) Through 
templated polymerization, the sequence of 
nucleotides in an existing dnA strand controls 
the sequence in which nucleotides are joined 
together in a new dnA strand; T in one 
strand pairs with A in the other, and G in one 
strand with c in the other. The new strand 
has a nucleotide sequence complementary 
to that of the old strand, and a backbone 
with opposite directionality: corresponding 
to the GTAA... of the original strand, it has 
...TTAc. (d) A normal dnA molecule consists 
of two such complementary strands. The 
nucleotides within each strand are linked 
by strong (covalent) chemical bonds; the 
complementary nucleotides on opposite 
strands are held together more weakly, by 
hydrogen bonds. (e) The two strands twist 
around each other to form a double helix—a 
robust structure that can accommodate any 
sequence of nucleotides without altering its 
basic structure (see movie 4.1).
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existing strand bind to bases of the strand being synthesized, according to a strict 
rule defned by the complementary structures of the bases: A binds to T, and C 
binds to G. Tis base-pairing holds fresh monomers in place and thereby con-
trols the selection of which one of the four monomers shall be added to the grow-
ing strand next. In this way, a double-stranded structure is created, consisting of 
two exactly complementary sequences of As, Cs, Ts, and Gs. Te two strands twist 
around each other, forming a DNA double helix (Figure 1–2E). 

Te bonds between the base pairs are weak compared with the sugar-phos-
phate links, and this allows the two DNA strands to be pulled apart without break-
age of their backbones. Each strand then can serve as a template, in the way just 
described, for the synthesis of a fresh DNA strand complementary to itself—a 
fresh copy, that is, of the hereditary information (Figure 1–3). In diferent types 
of cells, this process of DNA replication occurs at diferent rates, with diferent 
controls to start it or stop it, and diferent auxiliary molecules to help it along. But 
the basics are universal: DNA is the information store for heredity, and templated 
polymerization is the way in which this information is copied throughout the liv-
ing world.

All cells Transcribe Portions of Their hereditary Information into 
the same Intermediary Form: RnA 
To carry out its information-bearing function, DNA must do more than copy itself. 
It must also express its information, by letting the information guide the synthesis 
of other molecules in the cell. Tis expression occurs by a mechanism that is the 
same in all living organisms, leading frst and foremost to the production of two 
other key classes of polymers: RNAs and proteins. Te process (discussed in detail 
in Chapters 6 and 7) begins with a templated polymerization called transcription, 
in which segments of the DNA sequence are used as templates for the synthe-
sis of shorter molecules of the closely related polymer ribonucleic acid, or RNA. 
Later, in the more complex process of translation, many of these RNA molecules 
direct the synthesis of polymers of a radically diferent chemical class—the pro-
teins (Figure 1–4).

In RNA, the backbone is formed of a slightly diferent sugar from that of DNA—
ribose instead of deoxyribose—and one of the four bases is slightly diferent—ura-
cil (U) in place of thymine (T). But the other three bases—A, C, and G—are the 
same, and all four bases pair with their complementary counterparts in DNA—the 
A, U, C, and G of RNA with the T, A, G, and C of DNA. During transcription, the 
RNA monomers are lined up and selected for polymerization on a template strand 
of DNA, just as DNA monomers are selected during replication. Te outcome is a 
polymer molecule whose sequence of nucleotides faithfully represents a portion 
of the cell’s genetic information, even though it is written in a slightly diferent 
alphabet—consisting of RNA monomers instead of DNA monomers. 

Te same segment of DNA can be used repeatedly to guide the synthesis of 
many identical RNA molecules. Tus, whereas the cell’s archive of genetic infor-
mation in the form of DNA is fxed and sacrosanct, these RNA transcripts are 

parent DNA double helix

template strand

template strand

new strand

new strand

MBoC6 m1.03/1.03

Figure 1–3 The copying of genetic 
information by DNA replication. In this 
process, the two strands of a dnA double 
helix are pulled apart, and each serves 
as a template for synthesis of a new 
complementary strand.

PROTEIN

RNA

DNA

DNA

protein synthesis
TRANSLATION

RNA synthesis
TRANSCRIPTIONnucleotides

DNA synthesis
REPLICATION
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amino acids

Figure 1–4 From DNA to protein. 
Genetic information is read out and put 
to use through a two-step process. First, 
in transcription, segments of the dnA 
sequence are used to guide the synthesis 
of molecules of RnA. Then, in translation, 
the RnA molecules are used to guide the 
synthesis of molecules of protein.
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mass-produced and disposable (Figure 1–5). As we shall see, these transcripts 
function as intermediates in the transfer of genetic information. Most notably, 
they serve as messenger RNA (mRNA) molecules that guide the synthesis of pro-
teins according to the genetic instructions stored in the DNA. 

RNA molecules have distinctive structures that can also give them other spe-
cialized chemical capabilities. Being single-stranded, their backbone is fexible, 
so that the polymer chain can bend back on itself to allow one part of the molecule 
to form weak bonds with another part of the same molecule. Tis occurs when 
segments of the sequence are locally complementary: a ...GGGG... segment, for 
example, will tend to associate with a ...CCCC... segment. Tese types of internal 
associations can cause an RNA chain to fold up into a specifc shape that is dic-
tated by its sequence (Figure 1–6). Te shape of the RNA molecule, in turn, may 
enable it to recognize other molecules by binding to them selectively—and even, 
in certain cases, to catalyze chemical changes in the molecules that are bound. In 
fact, some chemical reactions catalyzed by RNA molecules are crucial for several 
of the most ancient and fundamental processes in living cells, and it has been sug-
gested that an extensive catalysis by RNA played a central part in the early evolu-
tion of life (discussed in Chapter 6).

All cells use Proteins as catalysts
Protein molecules, like DNA and RNA molecules, are long unbranched polymer 
chains, formed by stringing together monomeric building blocks drawn from a 
standard repertoire that is the same for all living cells. Like DNA and RNA, pro-
teins carry information in the form of a linear sequence of symbols, in the same 
way as a human message written in an alphabetic script. Tere are many diferent 
protein molecules in each cell, and—leaving out the water—they form most of the 
cell’s mass.

The unIveRsAl FeATuRes oF cells on eARTh
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DOUBLE-STRANDED DNA AS
INFORMATION ARCHIVE

strand used as a template to
direct RNA synthesis

many identical
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TRANSCRIPTION

RNA MOLECULES AS EXPENDABLE 
INFORMATION CARRIERS

Figure 1–5 How genetic information 
is broadcast for use inside the cell. 
each cell contains a fxed set of dnA 
molecules—its archive of genetic 
information. A given segment of this dnA 
guides the synthesis of many identical RnA 
transcripts, which serve as working copies 
of the information stored in the archive. 
many different sets of RnA molecules can 
be made by transcribing different parts of 
a cell’s dnA sequences, allowing different 
types of cells to use the same information 
store differently.

Figure 1–6 The conformation of an 
RNA molecule. (A) nucleotide pairing 
between different regions of the same 
RnA polymer chain causes the molecule 
to adopt a distinctive shape. (B) The 
three-dimensional structure of an actual 
RnA molecule produced by hepatitis delta 
virus; this RnA can catalyze RnA strand 
cleavage. The blue ribbon represents the 
sugar-phosphate backbone and the bars 
represent base pairs (see movie 6.1).  
(B, based on A.R. Ferré-d’Amaré, k. Zhou, 
and J.A. doudna, Nature 395:567–574, 
1998. With permission from macmillan  
Publishers ltd.)

GGG A

CCC U

A
G
C
U
U
A
A
A

U
C
G
A
A
U
U
U

A
U
G
C
A
U

U
A
C
G
U

A

AAA

UU U

U A U G
A

U A C

G
C

A
U

G
C G

C

A
U
G

C

(A) (B)

MBoC6 m1.06/1.06



6 Chapter 1:  cells and Genomes

Te monomers of protein, the amino acids, are quite diferent from those of 
DNA and RNA, and there are 20 types instead of 4. Each amino acid is built around 
the same core structure through which it can be linked in a standard way to any 
other amino acid in the set; attached to this core is a side group that gives each 
amino acid a distinctive chemical character. Each of the protein molecules is a 
polypeptide, created by joining its amino acids in a particular sequence. Trough 
billions of years of evolution, this sequence has been selected to give the protein a 
useful function. Tus, by folding into a precise three-dimensional form with reac-
tive sites on its surface (Figure 1–7A), these amino-acid polymers can bind with 
high specifcity to other molecules and can act as enzymes to catalyze reactions 
that make or break covalent bonds. In this way they direct the vast majority of 
chemical processes in the cell (Figure 1–7B). 

Proteins have many other functions as well—maintaining structures, generat-
ing movements, sensing signals, and so on—each protein molecule performing 
a specifc function according to its own genetically specifed sequence of amino 
acids. Proteins, above all, are the main molecules that put the cell’s genetic infor-
mation into action. 

Tus, polynucleotides specify the amino acid sequences of proteins. Proteins, 
in turn, catalyze many chemical reactions, including those by which new DNA 
molecules are synthesized. From the most fundamental point of view, a living cell 
is a self-replicating collection of catalysts that takes in food, processes this food 
to derive both the building blocks and energy needed to make more catalysts, 
and discards the materials left over as waste (Figure 1–8A). A feedback loop that 
connects proteins and polynucleotides forms the basis for this autocatalytic, self-
reproducing behavior of living organisms (Figure 1–8B).

All cells Translate RnA into Protein in the same Way
How the information in DNA specifes the production of proteins was a com-
plete mystery in the 1950s when the double-stranded structure of DNA was frst 
revealed as the basis of heredity. But in the intervening years, scientists have dis-
covered the elegant mechanisms involved. Te translation of genetic information 
from the 4-letter alphabet of polynucleotides into the 20-letter alphabet of pro-
teins is a complex process. Te rules of this translation seem in some respects 
neat and rational but in other respects strangely arbitrary, given that they are 
(with minor exceptions) identical in all living things. Tese arbitrary features, it 
is thought, refect frozen accidents in the early history of life. Tey stem from the 
chance properties of the earliest organisms that were passed on by heredity and 
have become so deeply embedded in the constitution of all living cells that they 
cannot be changed without disastrous efects.

(A) lysozyme

MBoC6 m1.07/1.07
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Figure 1–7 How a protein molecule acts as a catalyst for a chemical reaction. (A) In a protein 
molecule, the polymer chain folds up into a specifc shape defned by its amino acid sequence. A 
groove in the surface of this particular folded molecule, the enzyme lysozyme, forms a catalytic site.  
(B) A polysaccharide molecule (red)—a polymer chain of sugar monomers—binds to the catalytic site of 
lysozyme and is broken apart, as a result of a covalent bond-breaking reaction catalyzed by the amino 
acids lining the groove (see movie 3.9). (PdB code: 1lyd.)
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It turns out that the information in the sequence of a messenger RNA molecule 
is read out in groups of three nucleotides at a time: each triplet of nucleotides, or 
codon, specifes (codes for) a single amino acid in a corresponding protein. Since 
the number of distinct triplets that can be formed from four nucleotides is 43, 

there are 64 possible codons, all of which occur in nature. However, there are only 
20 naturally occurring amino acids. Tat means there are necessarily many cases 
in which several codons correspond to the same amino acid. Tis genetic code is 
read out by a special class of small RNA molecules, the transfer RNAs (tRNAs). 
Each type of tRNA becomes attached at one end to a specifc amino acid, and 
displays at its other end a specifc sequence of three nucleotides—an anticodon—
that enables it to recognize, through base-pairing, a particular codon or subset of 
codons in mRNA. Te intricate chemistry that enables these tRNAs to translate 
a specifc sequence of A, C, G, and U nucleotides in an mRNA molecule into a 
specifc sequence of amino acids in a protein molecule occurs on the ribosome, a 
large multimolecular machine composed of both protein and ribosomal RNA. All 
of these processes are described in detail in Chapter 6. 

each Protein Is encoded by a specifc Gene
DNA molecules as a rule are very large, containing the specifcations for thou-
sands of proteins. Special sequences in the DNA serve as punctuation, defning 
where the information for each protein begins and ends. And individual segments 
of the long DNA sequence are transcribed into separate mRNA molecules, coding 
for diferent proteins. Each such DNA segment represents one gene. A complica-
tion is that RNA molecules transcribed from the same DNA segment can often be 
processed in more than one way, so as to give rise to a set of alternative versions 
of a protein, especially in more complex cells such as those of plants and animals. 
In addition, some DNA segments—a smaller number—are transcribed into RNA 
molecules that are not translated but have catalytic, regulatory, or structural func-
tions; such DNA segments also count as genes. A gene therefore is defned as the 
segment of DNA sequence corresponding to a single protein or set of alternative 
protein variants or to a single catalytic, regulatory, or structural RNA molecule. 

In all cells, the expression of individual genes is regulated: instead of manu-
facturing its full repertoire of possible proteins at full tilt all the time, the cell 
adjusts the rate of transcription and translation of diferent genes independently, 
according to need. Stretches of regulatory DNA are interspersed among the seg-
ments that code for protein, and these noncoding regions bind to special protein 
molecules that control the local rate of transcription. Te quantity and organiza-
tion of the regulatory DNA vary widely from one class of organisms to another, 
but the basic strategy is universal. In this way, the genome of the cell—that is, the 
totality of its genetic information as embodied in its complete DNA sequence—
dictates not only the nature of the cell’s proteins, but also when and where they 
are to be made.
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Figure 1–8 Life as an autocatalytic 
process. (A) The cell as a self-replicating 
collection of catalysts. (B) Polynucleotides 
(the nucleic acids dnA and RnA, which are 
nucleotide polymers) provide the sequence 
information, while proteins (amino acid 
polymers) provide most of the catalytic 
functions that serve—through a complex 
set of chemical reactions—to bring about 
the synthesis of more polynucleotides and 
proteins of the same types.



8 Chapter 1:  cells and Genomes

life Requires Free energy
A living cell is a dynamic chemical system, operating far from chemical equilib-
rium. For a cell to grow or to make a new cell in its own image, it must take in 
free energy from the environment, as well as raw materials, to drive the necessary 
synthetic reactions. Tis consumption of free energy is fundamental to life. When 
it stops, a cell decays toward chemical equilibrium and soon dies. 

Genetic information is also fundamental to life, and free energy is required 
for the propagation of this information. For example, to specify one bit of infor-
mation—that is, one yes/no choice between two equally probable alternatives—
costs a defned amount of free energy that can be calculated. Te quantitative 
relationship involves some deep reasoning and depends on a precise defnition of 
the term “free energy,” as explained in Chapter 2. Te basic idea, however, is not 
difcult to understand intuitively. 

Picture the molecules in a cell as a swarm of objects endowed with thermal 
energy, moving around violently at random, bufeted by collisions with one 
another. To specify genetic information—in the form of a DNA sequence, for 
example—molecules from this wild crowd must be captured, arranged in a spe-
cifc order defned by some preexisting template, and linked together in a fxed 
relationship. Te bonds that hold the molecules in their proper places on the 
template and join them together must be strong enough to resist the disordering 
efect of thermal motion. Te process is driven forward by consumption of free 
energy, which is needed to ensure that the correct bonds are made, and made 
robustly. In the simplest case, the molecules can be compared with spring-loaded 
traps, ready to snap into a more stable, lower-energy attached state when they 
meet their proper partners; as they snap together into the bonded arrangement, 
their available stored energy—their free energy—like the energy of the spring 
in the trap, is released and dissipated as heat. In a cell, the chemical processes 
underlying information transfer are more complex, but the same basic principle 
applies: free energy has to be spent on the creation of order.

To replicate its genetic information faithfully, and indeed to make all its com-
plex molecules according to the correct specifcations, the cell therefore requires 
free energy, which has to be imported somehow from the surroundings. As we 
shall see in Chapter 2, the free energy required by animal cells is derived from 
chemical bonds in food molecules that the animals eat, while plants get their free 
energy from sunlight.

All cells Function as Biochemical Factories dealing with the same 
Basic molecular Building Blocks
Because all cells make DNA, RNA, and protein, all cells have to contain and 
manipulate a similar collection of small molecules, including simple sugars, 
nucleotides, and amino acids, as well as other substances that are universally 
required. All cells, for example, require the phosphorylated nucleotide ATP (ade-
nosine triphosphate), not only as a building block for the synthesis of DNA and 
RNA, but also as a carrier of the free energy that is needed to drive a huge number 
of chemical reactions in the cell.

Although all cells function as biochemical factories of a broadly similar type, 
many of the details of their small-molecule transactions difer. Some organisms, 
such as plants, require only the simplest of nutrients and harness the energy of 
sunlight to make all their own small organic molecules. Other organisms, such as 
animals, feed on living things and must obtain many of their organic molecules 
ready-made. We return to this point later.

All cells Are enclosed in a Plasma membrane Across Which 
nutrients and Waste materials must Pass
Another universal feature is that each cell is enclosed by a membrane—the 
plasma membrane. Tis container acts as a selective barrier that enables the cell 
to concentrate nutrients gathered from its environment and retain the products it 
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synthesizes for its own use, while excreting its waste products. Without a plasma 
membrane, the cell could not maintain its integrity as a coordinated chemical 
system.

Te molecules that form a membrane have the simple physicochemical 
property of being amphiphilic—that is, consisting of one part that is hydropho-
bic (water-insoluble) and another part that is hydrophilic (water-soluble). Such 
molecules placed in water aggregate spontaneously, arranging their hydropho-
bic portions to be as much in contact with one another as possible to hide them 
from the water, while keeping their hydrophilic portions exposed. Amphiphilic 
molecules of appropriate shape, such as the phospholipid molecules that com-
prise most of the plasma membrane, spontaneously aggregate in water to create 
a bilayer that forms small closed vesicles (Figure 1–9). Te phenomenon can be 
demonstrated in a test tube by simply mixing phospholipids and water together; 
under appropriate conditions, small vesicles form whose aqueous contents are 
isolated from the external medium. 

Although the chemical details vary, the hydrophobic tails of the predominant 
membrane molecules in all cells are hydrocarbon polymers (–CH2–CH2–CH2–), 
and their spontaneous assembly into a bilayered vesicle is but one of many exam-
ples of an important general principle: cells produce molecules whose chemical 
properties cause them to self-assemble into the structures that a cell needs.

Te cell boundary cannot be totally impermeable. If a cell is to grow and repro-
duce, it must be able to import raw materials and export waste across its plasma 
membrane. All cells therefore have specialized proteins embedded in their mem-
brane that transport specifc molecules from one side to the other. Some of these 
membrane transport proteins, like some of the proteins that catalyze the funda-
mental small-molecule reactions inside the cell, have been so well preserved over 
the course of evolution that we can recognize the family resemblances between 
them in comparisons of even the most distantly related groups of living organ-
isms. 

Te transport proteins in the membrane largely determine which molecules 
enter the cell, and the catalytic proteins inside the cell determine the reactions 
that those molecules undergo. Tus, by specifying the proteins that the cell is to 
manufacture, the genetic information recorded in the DNA sequence dictates the 
entire chemistry of the cell; and not only its chemistry, but also its form and its 
behavior, for these too are chiefy constructed and controlled by the cell’s proteins. 

A living cell can exist with Fewer Than 500 Genes
Te basic principles of biological information transfer are simple enough, but how 
complex are real living cells? In particular, what are the minimum requirements? 
We can get a rough indication by considering a species that has one of the small-
est known genomes—the bacterium Mycoplasma genitalium (Figure 1–10). Tis 
organism lives as a parasite in mammals, and its environment provides it with 
many of its small molecules ready-made. Nevertheless, it still has to make all the 
large molecules—DNA, RNAs, and proteins—required for the basic processes of 
heredity. It has about 530 genes, about 400 of which are essential. Its genome of 
580,070 nucleotide pairs represents 145,018 bytes of information—about as much 
as it takes to record the text of one chapter of this book. Cell biology may be com-
plicated, but it is not impossibly so.

Te minimum number of genes for a viable cell in today’s environments is 
probably not less than 300, although there are only about 60 genes in the core set 
that is shared by all living species.
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Figure 1–9 Formation of a membrane by amphiphilic phospholipid 
molecules. Phospholipids have a hydrophilic (water-loving, phosphate) head 
group and a hydrophobic (water-avoiding, hydrocarbon) tail. At an interface 
between oil and water, they arrange themselves as a single sheet with their 
head groups facing the water and their tail groups facing the oil. But when 
immersed in water, they aggregate to form bilayers enclosing aqueous 
compartments, as indicated.




